
J
H
E
P
1
1
(
2
0
0
7
)
0
7
8

Published by Institute of Physics Publishing for SISSA

Received: September 27, 2007

Accepted: November 5, 2007

Published: November 26, 2007

Branes, anti-branes and Brauer algebras in

gauge-gravity duality

Yusuke Kimura and Sanjaye Ramgoolam

Department of Physics, Queen Mary, University of London,

Mile End Road, London E1 4NS U.K.

E-mail: y.kimura@qmul.ac.uk, s.ramgoolam@qmul.ac.uk

Abstract: We propose gauge theory operators built using a complex Matrix scalar which

are dual to brane-anti-brane systems in AdS5 × S5, in the zero coupling limit of the dual

Yang-Mills. The branes involved are half-BPS giant gravitons. The proposed operators

dual to giant-anti-giant configurations satisfy the appropriate orthogonality properties.

Projection operators in Brauer algebras are used to construct the relevant multi-trace

Matrix operators. These are related to the “coupled representations” which appear in 2D

Yang-Mills theory. We discuss the implications of these results for the quantum mechanics

of a complex matrix model, the counting of non-supersymmetric operators and the physics

of brane-anti-brane systems. The stringy exclusion principle known from the properties of

half-BPS giant gravitons, has a new incarnation in this context. It involves a qualitative

change in the map between brane-anti-brane states to gauge theory operators. In the case

of a pair of sphere giant and anti-giant this change occurs when the sum of the magnitudes

of their angular momenta reaches N .
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1. Introduction

The two-point functions of gauge theory operators in N = 4 U(N) super-Yang-Mills gauge

theory corresponding to highest weights of half-BPS representations can be diagonalised [1].

The elements of the diagonal basis are given in terms of χR(Φ) where R is a Young Diagram

of n boxes

χR(Φ) =
1

n!

∑

σ∈Sn

χR(σ)tr(σΦ) (1.1)

χR(σ) is the character of σ in the representation of Sn labelled by R. Φ is a complex

matrix which can be viewed as an operator acting on an N -dimensional vector space V ,

i.e Φ : V → V . It can be extended to give an operator transforming V ⊗n → V ⊗n by

considering Φ⊗Φ · · · ⊗Φ. In the r.h.s. of (1.1) the trace is being taken in V ⊗n, and σ acts

on V ⊗n by permuting the factors. From these facts it follows that

tr(σΦ) = Φi1
iσ(1)

· · ·Φin
iσ(n)

(1.2)

The operator χR(Φ) can also be viewed as a holomorphic continuation of the U(N) char-

acter χR(U) by replacing the unitary matrix U with a complex matrix Φ. It is also useful

to view it as a trace trn(pR

dR
Φ) in V ⊗n obtained by using a projection operator pR in the

group algebra of Sn

pR =
dR

n!

∑

σ∈Sn

χR(σ)σ (1.3)

The 2-point function in this basis of operators is diagonal

< χR(Φ†(x1))χS(Φ(x2)) >=
δRSfR

(x1 − x2)2n
(1.4)

where fR is a simple group theoretic quantity. This is derived using the basic formula

< Φ† i
j (x1)Φ

k
l (x2) >=

δi
lδ

j
k

(x1 − x2)2
(1.5)
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In most of this paper we will not be interested in the position dependences, so we will drop

the x’s. Having a diagonal basis in the space of half-BPS operators allows an identification

of gauge theory operators corresponding to half-BPS giant gravitons [2 – 4] in AdS5 × S5

space-time via the AdS/CFT duality [5 – 7]. Some further aspects and developments related

to half-BPS giant gravitons are in [1, 8 – 16] and references therein.

For an appropriate choice of R, χR(Φ) is dual to a sphere-giant graviton, which is

a spherical three-brane moving in S5. As we will explain, by replacing the 3-brane with

an anti-3-brane, and at the same time reversing the direction of rotation, we also have a

solution of the same energy. This anti-giant is dual to χR(Φ†). The same remark applies

to AdS-giants (also known as dual giants). The main interest in this paper is to investigate

candidates for systems of giant and anti-giants. This requires a diagonalisation of the

two-point function in the space of operators built from both Φ and Φ†. This problem can

be solved elegantly in terms of Brauer algebras. These algebras are parametrised by two

positive integers. For the case of m copies of Φ and n copies of Φ† the relevant algebra is

BN (m,n). The associative algebra BN (m,n) contains the group algebra of the product of

symmetric groups Sm × Sn, which is denoted as C[Sm × Sn].

An outline of the proposal for gauge-theory duals of giant-anti-giants and the role of

Brauer algebras will be given in section 2. These Brauer algebras will be introduced more

systematically, their relevance and useful properties explained in section 3. Of particular

interest in constructing duals of brane-anti-brane composites will be a subset of the or-

thogonal central projectors in the Brauer algebra. By central, we mean that the projectors

commute with the Brauer algebra. Section 4 will be devoted to techniques for the explicit

construction of these orthogonal projectors. Examples of these projectors will be given in

section 5.

The gauge invariant operators constructed from central Brauer projectors do not ex-

haust the complete set of gauge invariant operators that can be constructed from Φ and

Φ†. To get the complete set we need to consider symmetric Brauer elements. The counting

of the gauge invariant operators in the limit where the Matrices Φ is large is known to be

given by Polya theory. In section 6, we relate the Polya counting to Brauer algebras. In

section 7 we describe an orthogonal basis in the space of symmetric Brauer elements and

show how they lead to a diagonal basis for the two-point functions of multi-trace oper-

ators. A physical interpretation in terms of brane-anti-branes of the orthogonal basis of

multi-trace operators is discussed in section 8. This includes a discussion of an interesting

finite N effect we describe as the nonchiral stringy exclusion principle.

The reader is not assumed to have any prior knowledge about Brauer algebras. A

summary of useful results is given in section 3, along with references to the mathematical

literature. For a reader with interest in Brauer algebras, we point out the new formula for

dual Brauer elements (3.27). The explicit formulae for projectors in section 4 and 5 and

the connection with Polya theory of sections 3.4 and 6 should also be of interest from this

mathematical point of view. For the reader familiar with the large N expansion of two-

dimensional Yang-Mills we would point to the new formula for coupled dimensions (4.18)

as an appetiser. Explicit examples of orthogonal bases of multi-matrix operators are given

in the appendices.
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2. Proposal for gauge theory duals of brane-anti-brane systems: outline

Giant 3-brane gravitons are dual to χR(Φ). A simple inspection of the derivation of the

giant graviton solutions of [2] shows that spherical anti-3-branes can provide supersym-

metric solutions with opposite angular momentum. When we change the angular velocity

φ̇ to −φ̇ while changing the sign of the Chern-Simons coupling to the background flux, as

appropriate for changing brane to anti-brane, the effective Lagrangian and Hamiltonian

are unchanged, while the angular momentum changes sign. This leads to the conclusion

that anti-branes also provide supersymmetric solutions. Giant anti-3-brane gravitons are

dual to χS(Φ†). The brane-anti-brane composites will be non-supersymmetric.

Gauge theory operators dual to brane-anti-brane systems involve both Φ and Φ†. In

the free field limit, the construction of composite operators such as χR(Φ) is simple. No

short distance subtractions are required, due to the vanishing two point function

< Φ(x)Φ(y) >= 0 (2.1)

If we wish to consider a local operator of the form tr(Φ)tr(Φ†) we have to subtract a

short distance singularity. Denoting the well-defined local operator as : tr(Φ(x))tr(Φ†(x)) :

we have

: tr(Φ(x))tr(Φ†(x)) : = Limǫ→0 tr(Φ(x)) tr(Φ†(x + ǫ)) −
N

ǫ2
(2.2)

Note that the renormalised operator leads to a well-defined state

: tr(Φ(x))tr(Φ†(x)) : |0 >

For example in computing the overlap of this state with < 0| we get a well-defined corre-

lator. Without the subtraction we would get a divergent answer for this overlap.

A naive guess for the gauge theory dual of a brane-anti-brane system would be :

χR(Φ)χS(Φ†) :. Such an operator is not in general orthogonal to operators which are of

the form : tr(ΦΦ†)χR1(Φ)χS1(Φ
†) :. In the simplest case of m = 1, n = 1, for example,

: tr(Φ)tr(Φ†) : is not orthogonal to : tr(ΦΦ†) : . However consider, in this case, an operator

O = tr(Φ)tr(Φ†) −
1

N
tr(ΦΦ†) (2.3)

This has a number of interesting and easily verified properties. The first is that its short

distance subtractions vanish

: O := O (2.4)

The second is that

< O : tr(ΦΦ†) :>= 0 (2.5)

In terms of the Young diagram classification of operators, tr(Φ) corresponds to the

single box Young diagram denoted as [1]. So the operator O above can be viewed as

– 4 –
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a singularity free operator associated to the pair of Young diagrams ([1], [1]), which is

orthogonal to operators where Φ,Φ† are in the same trace. Brauer algebras will allow us to

associate such a singularity free operator to any pair of Young diagrams R,S in the large

N limit. More precisely we will need c1(R)+c1(S) ≤ N , where c1 denotes the length of the

first column of the Young diagram. The origin of this condition in representation theory

comes from (3.8). When we consider a brane R and antibrane S with c1(R) + c1(S) > N ,

their composite is best viewed as an excited state of another pair of branes satisfying

the bound. A related fact is that the naive guess : χR(Φ)χS(Φ†) : becomes completely

dependent on operators where Φ,Φ† appear in the same trace. This will be explained in

section 8.

The Brauer technology is also useful in classifying operators in a zero-dimensional or

one-dimensional Matrix Model. In the one-dimensional case it has been shown [1] (see

also [13, 41, 42]) that the reduction of the four-dimensional action on S3 × R leads to the

Hamiltonian and SO(2) symmetry generator

H = tr(A†A + B†B)

J = tr(A†A − B†B) (2.6)

The construction of operators corresponding to giant gravitons involves gauge invariant

states obtained by acting with A† on the vacuum. For anti-giant gravitons, we act with

B† only. For systems consisting of composites of giant and anti-giant we act with both

A† and B†. We will find a diagonal basis in the space of such operators using the Brauer

algebra. The two-point function (1.5), with its position dependence removed, also appears

in the zero-dimensional complex matrix model introduced in [17] and studied more recently

in [18 – 20], which has a partition function

Z =

∫

[dΦdΦ†]e−tr(ΦΦ†) (2.7)

Hence our results are also relevant to this zero-dimensional matrix model. Finally we

expect that the results on projectors should help in a better understanding of the stringy

interpretation of the non-chiral large N expansion of intersecting Wilson loops in two-

dimensional Yang-Mills (2dYM). We will be making contact with some of the character

and dimension formulae which play a role in the non-chiral expansion of 2dYM [21 – 23].

Having given away what Brauer algebras do for us, it is time to describe them more

precisely and to explain why they are useful in understanding the properties of large com-

posite operators in gauge theory.

3. Gauge invariant operators, correlators and brauer algebras

In understanding the role of Brauer algebras in the calculation of correlation functions of

operators, it is useful to express the basic formulae from field theory in a diagrammatic

notation for operators acting on V or V ⊗n or more generally on V ⊗m ⊗ V ∗⊗n. The use of

diagrams for representing operators on tensor space plays a crucial role in knot theory [24]

and has also been developed by physicists [25]. In [26] the tensor space diagrams are used

– 5 –
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 Φ Φ

Figure 1: Correlator of Φ and Φ† as permutation operator.

 Φ Φ *

Figure 2: Correlator of Φ and Φ∗ as contraction operator.

in the calculation of Wilson loops in two-dimensional Yang-Mills theory. In section 3 of [9]

some of these diagrammatic techniques were summarised and used to simplify proofs of

properties of correlators of large dimension multi-traces [1].

3.1 Correlators and brauer algebras

Consider the basic 2-point function obtained by doing the free-field path integral over

Matrices

〈Φi
jΦ

†k
l 〉 = δi

lδ
k
j (3.1)

where we have dropped the spacetime-dependence. By recognising Φ as an operator on V

and σ as an operator on V ⊗ V with matrix elements

(σ)ikjl = δi
lδ

k
j (3.2)

we can re-write (3.1) in an index-free form as

〈Φ ⊗ Φ†〉 = σ (3.3)

This can be expressed in a precise diagrammatic form in figure 1. The permutation on the

r.h.s. is a map from V ⊗ V to V ⊗ V . The power of the diagrammatic presentation comes

from the fact that essentially the same diagram represents the 2-point function when we

– 6 –
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 Φ Φ
π −1 

n n n n 

Σ 
ππ

Figure 3: Correlator of n copies of Φ and n copies of Φ†.

have n copies of Φ and n copies of Φ†. Now we have Φ as an operator on V ⊗n which is

simply denoted by a line labelled by n. Φ is understood to act on this as Φ⊗Φ⊗· · ·⊗Φ. The

result of the correlator is to have the same twist, but in addition, a sum over permutations

in Sn (denoted by π in figure 3) which determines which of the n Φ’s is contracted with

which of the n Φ† (for uses of this diagrammatic formula see [9]).

Rather than writing the 2-point function in terms of Φ and Φ† we can use the complex

conjugate Φ∗ to write

〈Φi
jΦ

∗k
l 〉 = δikδjl (3.4)

We can view Φ∗ as a map from conjugate V̄ to V̄ and Φ ⊗ Φ∗ as a map from V ⊗ V̄ to

V ⊗ V̄ . To describe the right-hand side of (3.4) in algebraic terms we introduce the linear

operator C as a map from V ⊗ V̄ to V ⊗ V̄

(C)ikjl = δikδjl (3.5)

We can now write the index free form of (3.4) as

〈Φ ⊗ Φ∗〉 = C (3.6)

This can be expressed in a precise diagrammatic form in figure 2.

Note that in (3.4) the indices k, l are viewed as labelling vectors in V̄ whereas the (i, j)

denote vectors in V . We can make that explicit in the diagrams by introducing arrows,

but this is a refinement of the diagrammatic notation, which is not crucial, though it is

sometimes useful in manipulating the diagrams.

3.2 Brauer algebra: definition and Schur-Weyl duality

We review known facts about Brauer algebras mostly from [27]. Other useful references

are [28 – 33].

Recall that Sn is the centraliser of U(N) ( or GL(N) ) acting on V ⊗m. Hence we have

Schur-Weyl duality

V ⊗n = ⊕RV U(N)
R ⊗ V Sn

R (3.7)

– 7 –
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Sm ×Sn is contained in centraliser of U(N) ( GL(N) ) acting in V ⊗m ⊗ V̄ ⊗n. But we also

need contractions, which along with the permutations, generate the algebra BN (m,n).

Hence Schur-Weyl duality states that

V ⊗m ⊗ V̄ ⊗n = ⊕γV U(N)
γ ⊗ V BN (m,n)

γ (3.8)

It gives the decomposition of the tensor product V ⊗m ⊗ V̄ ⊗n in terms of irreps of U(N)

and BN (m,n). γ runs over sets of integers (γ1, γ2, · · · , γN ) obeying γ1 ≥ γ2 ≥ · · · ≥ γN .

The set of positive integers defines γ+ which is a partition of m − k while the negative

integers define a partition γ− of n−k. Here k is an integer lying between 0 and min(m,n).

Equivalently γ+ determines a Young diagram with m− k boxes, γ− one of n− k boxes. A

choice of γ is equivalent to a choice of (k, γ+, γ−). If we write γ+ as a Young diagram, with

row lengths equal to the parts in the partition, c1(γ+) is defined as the length of the first

column. It follows from the above definitions that c1(γ+) + c1(γ−) ≤ N . See more details

on this in section 8.

From the definition of the Brauer algebra elements in terms of operators in tensor

space, we can derive diagrammatic rules for multiplying them. The multiplication is done

by stacking the diagrams corresponding to the Brauer elements. Symmetric group elements

in Sn can be represented diagrammatically using two horizontal lines each containing n

marked points labelled by integers 1 . . . n. We will refer to these as two rungs. Any

particular element σ ∈ Sn is represented by drawing lines joining an integer i from the

bottom rung to an integer σ(i) in the top rung. Multiplication of elements in Sn is obtained

by stacking one pair of rungs on top of another, and identifying the top of the bottom pair

to the bottom of the top pair. Elements in Sm × Sn are represented using two rungs with

integers 1 . . . m on the left side of a vertical barrier and 1̄..n̄ on the right side of the vertical

barrier. Brauer elements in BN (m,n) are drawn using two horizontal rungs as for Sm×Sn,

but now in addition to the lines of Sm × Sn we allow lines joining the points on the lower

(upper) left of the barrier to points on the lower (upper) right of the barrier. Multiplication

is done as before by stacking two pairs of rungs. Closed loops are replaced by the parameter

N . This is illustrated in figures 4, 5. In figure 4 we have

(C31̄(23)) · (C31̄(12)) = C31̄(12)

In figure 5 we have

(C31̄) · (C31̄(12)) = NC31̄(12)

The Brauer algebra can be described by generators and relations. The relations can be

obtained by diagrammatic manipulation. The generators include the simple transpositions

si of Sm and s̄i of Sn. The simple transposition si exchanges i with i+1 leaving everything

else fixed. To this we add C11̄ which contracts the first V factor with the first V̄ factor.

By using the diagrammatic approach, one easily derives relations such as

Cij̄ = (i1)(1̄j̄)C11̄(i1)(1̄j̄)

Cij̄(ik)Cij̄ = Cij̄

Cij̄Cik̄ = Cij̄(j̄k̄) = (j̄k̄)Cik̄

Cij̄Ckj̄ = Cij̄(ik) = (ik)Ckj̄ (3.9)

– 8 –
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Of course these can also be derived equivalently by writing out all the operators involved

in terms of their matrix elements in V ⊗m ⊗ V̄ ⊗n.

It is also easy to check that Brauer elements commute with the action of the Lie

algebra of GL(N) or U(N) in V ⊗ V̄ . Let Eij be the matrix with 1 in the (i, j) entry, and

0 everywhere else. We have

(Eij ⊗ 1 + 1 ⊗ Eij) C vk ⊗ v̄l = (Eij ⊗ 1 + 1 ⊗ Eij) δkl vm ⊗ v̄m

= δkl(δjmvi ⊗ v̄m − δimvm ⊗ v̄j)

= 0 (3.10)

and

C(Eij ⊗ 1 + 1 ⊗ Eij)vk ⊗ v̄l = C(δjkvi ⊗ v̄l − δilvk ⊗ v̄j)

= δjkδilvm ⊗ v̄m − δilδjkvm ⊗ v̄m)

= 0 (3.11)

We record here the formula for dimensions of Brauer representations,

d(B)
γ =

m!n!

k!(m − k)!(n − k)!
dγ+dγ− (3.12)

in terms of the dimensions dγ+ of the Sm−k representation associated with the partition

γ+, and dγ− of the Sn−k representation associated with the partition γ−. There is also a

useful formula for the multiplicity of an irrep (α, β) of C[Sm ×Sn] subalgebra of BN (m,n)

appearing in the irrep γ of the Brauer algebra

Mγ
(α,β) =

∑

δ⊢k

g(δ, γ+;α)g(δ, γ− ;β) (3.13)

Here δ ⊢ k expresses the fact that δ is a partition of k. g(δ, γ+;α) is the Littlewood-

Richardson (LR) coefficient, determined by putting together Young diagrams according to

certain rules (see for example [34]). We will often use a single label A for the irreps of

C[Sm × Sn] where it is understood that A = (α ⊢ m,β ⊢ n), so that the multiplicity is

written as Mγ
A.

3.3 The bilinear form and map between BN (m,n) to C[Sm+n]

There is a symmetric bilinear form on the Brauer algebra, which follows by viewing them

as operators in tensor space

< b1, b2 >= trm,n(b1b2) (3.14)

Above and in the rest of the paper trm,n denotes the trace taken in V ⊗m ⊗ V̄ ⊗n. Using

the bilinear form we can define the dual element b∗ of any element b by the property

trm,n(bb∗) = 1 (3.15)

– 9 –
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Figure 4: Example of product in Brauer algebra
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1 2 3

1 2 3

1 2 3

Figure 5: Example of product in Brauer algebra with loop giving N

It is shown in [30] that for any fixed element c the following sum

[c] =
∑

b

bcb∗ (3.16)

over a complete basis of BN (m,n), gives a central element, which commutes with any

b ∈ BN (m,n). This is a generalisation to semi-simple algebras of the group averaging

procedure for group algebras. The dual elements also allow a construction of projectors

P γ = tγ
∑

b

χγ(b)b∗ = tγ
∑

b

χγ(b∗)b (3.17)

where b runs over a basis for BN (m,n). The normalisation factor can be seen, in this case,

to be tγ = Dimγ, the dimension of the U(N) irrep associated with the label γ. This follows

from [30] where it is shown P γ is a central projector (idempotent), with tγ equal to the

trace of a matrix unit tr(Eλ
11). In our case the trace is being taken in V ⊗m ⊗ V̄ ⊗n and

using Schur-Weyl duality (3.8) we find that

tγ =
∑

λ

(Dimλ) trλ(Eγ
11)

=
∑

λ

(Dimλ) δλγ

= Dimγ (3.18)
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Figure 6: The map Σ from BN (m, n) to C[Sm+n]
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Figure 7: Showing that tr(b1b2) = tr(Σ(b1)Σ(b2))

In the case at hand, we can obtain a lot of information about the bilinear form (3.14)

by exploiting a map Σ

Σ : BN (m,n) → C[Sm+n] (3.19)

We recall that in the diagrammatic description of Brauer elements given earlier in this

section, we have two horizontal lines, one on top of the other. Each line has m + n points,

with a vertical barrier separating the m from the n. In BN (m,n) lines crossing the barrier

join points on the upper left to points on the upper right, and points on the lower left

points on the lower right. Elements on Sm+n are described by lines joining lower points to

upper points whether they cross the barrier or not. The map Σ simply reflects the upper

right segment and the lower right segment into each other. It is illustrated in figure 6,

where B1, B2 denote the sets of points labelled 1..n.

It is an invertible map from BN (m,n) to C[Sm+n], which is consistent with the fact

that the dimension of the Brauer algebra as a vector space is known to be (m + n)! ( e.g

see [27] ). It is not a homomorphism. It however has the crucial property that it maps the

symmetric bilinear form on BN (m,n) to a symmetric bilinear form on C[Sm+n]

trm,n(bibj) = trm,n(Σ(bi)Σ(bj)) (3.20)
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where bi runs over a complete basis for the Brauer algebra. This is made clear by figure 7.

On the left hand side, the set of points labelled by B2 (a set of labels for tensor space

indices) on the upper diagram for b2 is identified with the set B2 on the lower diagram for

b1 by the multiplication b2b1. The sets labelled by B1 are identified by the trace. On the

right hand side, the Σ map performs the reflection of labels B1 ↔ B2. The multiplication

of Σ(b2) with Σ(b1) identifies the B1 sets. The trace identifies the B2 sets. The outcome

in both cases is determined by the B1, B2 identifications, which proves (3.20). An explicit

formula for the bilinear form follows

tr(Σ(bi)Σ(bj)) =
∑

T⊢m+n

DimT χT (Σ(bi)Σ(bj))

= Nm+nδ(Ωm+nΣ(bi)Σ(bj)) (3.21)

The delta function over the symmetric group algebra δ(σ) is defined to be 1 if σ is the

identity and 0 otherwise. For m + n ≥ N , the sum over T is restricted by the condition

c1(T ) ≤ N . The Ωm+n factor is familiar from 2dYM theory, and is defined by

Ωn =
∑

σ∈Sn

NCσ−nσ (3.22)

where Cσ is the number of cycles in the permutation σ. When n < N , Ωn can be inverted,

and this is used to good effect in the large N expansion of 2dYM. Here we have

(Σ(b))∗ = N−m−nΩ−1
m+n(Σ(b))−1 (3.23)

Since Σ preserves the bilinear form (3.20) we have (Σ(b))∗ = Σ(b∗)

b∗ = N−m−nΣ−1(Ω−1
m+n(Σ(b))−1) (3.24)

An expansion of the Ω−1
m+n in terms of characters can be given

Ω−1
m+n =

Nm+n

(m + n)!

∑

T

dT

DimT
pT

=
Nm+n

((m + n)!)2

∑

T

d2
T

DimT

∑

σ∈Sm+n

χT (σ) σ (3.25)

so that

(Σ(b))∗ =
1

((m + n)!)2

∑

T

d2
T

DimT

∑

σ∈Sm+n

χT (σ)σ(Σ(b))−1 (3.26)

and

b∗ =
1

((m + n)!)2

∑

T

d2
T

DimT

∑

σ∈Sm+n

χT (σ) Σ−1( σ(Σ(b))−1 ) (3.27)

For m+n ≤ N the sum T runs over all partitions of m+n, but more generally c1(T ) ≤ N .
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It is instructive to consider

Gij = trm,n(bibj) = trm,n(σiσj) (3.28)

where bi belongs to a basis set in BN (m,n) while σi is the corresponding element Σ(bi) in

Sm+n. The inverse is defined as

σ∗
i = Gijσj (3.29)

From this equation, we obtain

δ(σ∗
i σ−1

k ) = Gijδ(σjσ
−1
k ) = Gik (3.30)

Gij = δ(σ∗
i σ−1

j )

=
1

Nm+n
δ
(

Ω−1
m+nσ−1

i σ−1
j

)

=
1

((m + n)!)2

∑

T

d2
T

dimT
χT (σ−1

i σ−1
j ) (3.31)

As usual at finite N we restrict c1(T ) ≤ N . We have used the following equations:

δ(σ) =
1

(m + n)!

∑

T

dT χT (σ)

dimT =
Nm+n

(m + n)!
χT (Ωm+n) (3.32)

3.4 Brauer algebra as a spectrum generating algebra for multi-traces of two

matrices

In the case of holomorphic multi-trace operators constructed from n copies of Φ it was

useful to write them as trn(σΦ), where the trace is in V ⊗n [1]. Different multi-trace

operators correspond to different states in the Hilbert space of N = 4 SYM on S3 × R,

via the operator-state correspondence (for elaboration of this see [7, 35, 36]). When two

permutations σ1, σ2 in Sn are related by a permutation σ3 as σ1 = σ3σ2σ
−1
3 , they lead to

the same multi-trace operator, and the same state in the Hilbert space in N = 4 SYM.

Permutations σ ∈ Sn, subject to an equivalence relation of conjugation by another element

in Sn, are just the conjugacy classes of Sn. In each equivalence class we have a central

element: the sum of permutations in the conjugacy class which is proportional to the group

average
∑

σ1
σ1σσ−1

1 . The conjugacy classes of Sn can be viewed, therefore, as forming a

spectrum generating algebra.

In the non-chiral case at hand, where we are considering multi-traces constructed from

Φ,Φ†, the Brauer algebra plays an analogous role. In the simplest case of BN (1, 1), the

Brauer algebra is two-dimensional, spanned by 1 and C. We have

tr(1,1)(Φ ⊗ Φ∗) = trΦtrΦ† (3.33)

and

tr(1,1)C(Φ ⊗ Φ∗) = < ei ⊗ ēj |C(Φ ⊗ Φ∗)|ei ⊗ ēj >

= < ei ⊗ ēj |CΦk
i Φ

∗l
j |ek ⊗ el >

= < ei ⊗ ēj |δklΦ
k
i Φ

∗l
j |em ⊗ ēm >

= trΦΦ† (3.34)
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In fact any multi-trace constructed from Φ,Φ† can be obtained by using tr(b Φ ⊗ Φ†) for

general b. Consider any trace trm,n(Φm1Φ† n1Φm2Φ† n2 · · ·ΦmkΦ† nk). The element b in

this case involves cyclic permutations with cycle lengths m1,m2 . . . in Sm and a permu-

tation with cycles n1, n2 . . . in Sn along with k contractions and a further permutation to

join the contractions. One can write an explicit formula to demonstrate the above, but

the reader should easily convince him(her)self of the above claim by considering a few

examples. An important point to note is that a Brauer element b and another element

hbh−1 produce the same multi-trace if h ∈ Sm × Sn. In the diagrammatic presentation of

Brauer elements, the conjugation corresponds to re-labelling the numbers on the top and

bottom rungs. Therefore, counting multi-traces is the same as counting these equivalence

classes under conjugation by h. In each equivalence class we can build, by averaging any

chosen element b using
∑

h hbh−1, a unique element which commutes with Sm × Sn. We

will call such elements, symmetric elements. It is interesting that this notion of equivalence

by conjugation with h ∈ Sm × Sn has been studied in [27] purely as an algebraic property.

Here the equivalence is motivated by the role of Brauer as a spectrum generating algebra

for multi-traces.

A natural way to construct symmetric elements from representation theory is to con-

sider projectors for fixed irreducible representations. In sections 4, 5 we will be considering

projectors for Brauer irreps. Since each Brauer irrep decomposes under the action of the

C[Sm×Sn] sub-algebra into irreducible reps according to (3.13), the central Brauer projec-

tors will be sums of symmetric Brauer projectors. However the symmetric Brauer projectors

do not exhaust the complete set of symmetric elements. One has to consider more general

symmetric branching operators. We will describe them in more detail in section 7, where

we will also argue that they provide a complete set of symmetric elements. In section 6,

we will show how to count symmetric projectors, and symmetric branching operators, and

show agreement with the known counting of large N multi-traces based on Polya theory.

The Brauer counting however extends beyond the large N limit, and finite N effects will

be described in section 8.

We observe some useful facts, which involve the map Σ given in section 3.3. The map

Σ is also useful when we construct gauge invariant operators from the matrices Φ,Φ†. The

equation

trm,n(bΦ ⊗ Φ∗) = trm,n(Σ(b)Φ ⊗ Φ†) (3.35)

follows from the diagrammatics. In the Matrix quantum mechanics we have the related

fact that

trm,n(Σ(b)A† ⊗ B†) = trm,n(bA† ⊗ (B†)T ) (3.36)

The transpose acts on the matrix indices. It is also useful to note that

hbh−1 = b ⇐⇒ hΣ(b)h−1 = Σ(b) (3.37)

In other words, if b is a symmetric element, then Σ(b) is a symmetric element.
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4. Projectors in Brauer algebra

As reviewed in the discussion of (3.8) the tensor product V ⊗m ⊗ V̄ ⊗n decomposes into

a direct sum of irreps of BN (m,n) and U(N) labelled by γ, where γ = (k, γ+, γ−). For

each γ, there is a projector P γ which, acting on V ⊗m ⊗ V̄ ⊗n, projects onto the subspace

labelled by γ. This projector can be constructed from Brauer elements, and is central, i.e

commutes with any element of BN (m,n). The k = 0 projectors have special properties.

Writing P (k=0,γ+=R,γ−=S) ≡ PRS̄ to connect to the notation of 2D Yang Mills theory, we

have, for a unitary matrix U ,

trm,n(PRS̄U) = d
(B)

RS̄
χRS̄(U) = dRdSχRS̄(U) (4.1)

On V ⊗m ⊗ V̄ ⊗n, U acts as U ⊗ U · · ·U ⊗ U∗ ⊗ · · ·U∗ with m factors of U and n factors

of U∗. The first equality follows from (3.8) and the second equality expresses the Brauer

dimension using (3.12) in terms of the symmetric group irrep dimensions dR, dS . The

character χRS̄(U) is the character of the “coupled representation” used in 2dYM [21, 22].

By setting U = 1 we have

trm,n(PRS̄) = dRdSDimRS̄ (4.2)

In section 7 we will be considering local operators in 4D field theory trm,n(PRS̄Φ ⊗ Φ∗) as

well as related operators in the reduced Matrix quantum mechanics. The notation P γ will

be used for general γ, PRS̄ being reserved for the special case of γ with k = 0. Note that,

since Φ is a general complex matrix, not necessarily satisfying ΦΦ† = 1, trm,n(PRS̄Φ⊗Φ∗)

cannot be obtained just by replacing U → Φ in χRS̄(U).

In this section and the next, we will be describing various formulae for the construction

of the orthogonal set of central projectors P γ . For k 6= 0, the P γ will be a sum of orthogonal

symmetric projectors.

P γ =
∑

A,i

P γ
A,i (4.3)

The symmetric projectors P γ
A,i are not, in general, Brauer central elements, but they do

commute with elements h in the C[Sm × Sn] subalgebra of BN (m,n). A labels irreps of

C[Sm × Sn].

4.1 Projector for k = 0 using character formula

Starting from (3.17) we rewrite the projector for k = 0 using the character formula for

elements of Brauer algebra, which is in theorem 7.20 in [27]

χγ
BN (m,n)(ζ) = Nh

∑

λ⊢m′,π⊢n′





∑

δ⊢(k−h)

g(δ, γ+;λ)g(δ, γ−;π)



 χλ
Sm′

(ζ+)χπ
Sn′

(ζ−) (4.4)

where γ+ ⊢ (m − k), γ− ⊢ (n − k), ζ+ ⊢ m′ = (m − h) and ζ− ⊢ n′ = (n − h). ζ

denotes a element of Brauer algebra, and we use b hereafter instead of ζ. h is an integer
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which is determined by the minimal number of contractions in a Brauer element. For

b = σ ⊗ τ ∈ C[Sm × Sn] we have h = 0 and h ≥ 1 if b contains contractions.

We set k = 0 in the character formula (4.4). In this case, γ+ ≡ R ⊢ m, γ− ≡ S ⊢ n.

For b with h ≥ 1, k − h = −h < 0, so it cannot have any partitions δ, hence relevant

characters vanish. Therefore χγ(b) 6= 0 only for b ∈ Sm × Sn when k = 0. Then the

character of b = σ ⊗ τ ∈ Sm × Sn can be calculated as

χγ
BN (m,n)(σ ⊗ τ) =

∑

λ⊢m,π⊢n

g(∅, R;λ)g(∅, S;π)χλ
Sm

(σ)χπ
Sn

(τ)

= χR
Sm

(σ)χS
Sn

(τ) (4.5)

We also use

b∗ = (1∗)b−1 b ∈ C[Sm × Sn] (4.6)

which is a special case of (3.24). We now rewrite the projector for k = 0 using the above

things.

PRS̄ = DimRS̄
∑

b

χγ(b)b∗

= DimRS̄
∑

b∈Sm×Sn

χγ(b)b∗

= DimRS̄
∑

σ∈Sm,τ∈Sn

χR(σ)χS(τ)1∗(σ ⊗ τ)−1

= DimRS̄1∗
∑

σ∈Sm

χR(σ)σ−1
∑

τ∈Sn

χS(τ)τ−1

= DimRS̄
m!n!

dRdS
1∗pRp̄S (4.7)

Using

1∗ =
1

Nm+n
Σ−1

(

Ω−1
m+n

)

=
1

(m + n)!

∑

T

dT

dimT
Σ−1 (pT )

=
1

((m + n)!)2

∑

T⊢m+n

d2
T

dimT

∑

σ

χT (σ−1)Σ−1 (σ) (4.8)

where we have used (3.25) to obtain the second line, we have

PRS̄ =
m!n!

((m + n)!)2
DimRS̄

dRdS

∑

T⊢m+n

d2
T

dimT

∑

σ

χT (σ−1)Σ−1 (σ) pRp̄S (4.9)

In appendix A.1, we will use the expression (4.9) to obtain some examples of projectors.

If we take a trace of the expression for PRS̄ we obtain

(m + n)!

m!n!
dRdS =

∑

T

g(R,S;T )dT (4.10)

which we know to be a true identity from facts about induced representations from Sm×Sn

to Sm+n [34]. This gives a check of the validity of tγ = DimRS̄.
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4.2 Relation between BN (m,n) and C[Sm+n] and a new formula for dimension of

coupled representations

Starting with the form

Pγ = tγ
∑

b

χγ(b∗)b

we can write the projector as

Pγ = (Dimγ)
∑

σ

Σ−1(σ)N−m−nχγ(Σ−1(Ω−1
m+n · σ−1)) (4.11)

For the k = 0 representations,

PRS̄ = (DimRS̄)
∑

σ

N−m−nχR⊗S(Σ−1(Ω−1
m+n · σ−1)|Sm×Sn

) Σ−1(σ) (4.12)

We know that the term without contractions is pR ⊗ pS . The coefficient of 1 is
d2

R
d2

S

m!n! . By

equating this to the term obtained from (4.12) by setting σ = 1, we have

d2
Rd2

S

m!n!
= N−m−n DimRS̄ χR⊗S(Σ−1(Ω−1

m+n)|Sm×Sn
) (4.13)

Using (3.25) and restricting to the subgroup

Ω−1
m+n|Sm×Sn

=
Nm+n

((m + n)!)2

∑

T

d2
T

DimT

∑

σ1∈Sm

∑

σ2∈Sn

χT (σ1 · σ2)σ1 · σ2 (4.14)

The character χT (σ1 · σ2) can be expanded using LR coefficients:

χT (σ1 · σ2) =
∑

R1,S1

g(R1, S1;T )χR1(σ1)χS1(σ2) (4.15)

We also need to use

Σ−1(σ1 · σ2) = σ1 · σ
−1
2

χR⊗S(σ1 · σ
−1
2 ) = χR(σ1)χS(σ2) (4.16)

and the orthogonality of characters

1

m!

∑

σ1

χR(σ1)χR1(σ1) = δRR1 (4.17)

Using these facts to simplify the r.h.s. of (4.13)

d2
Rd2

S

DimRS̄
=

m!2n!2

(m + n)!2

∑

T

d2
T

DimT
g(R,S;T ) (4.18)

For m + n ≤ N , T above runs over all Young diagrams with m + n boxes. In the case

m + n > N , but with the condition c1(R) + c1(S) < N which is necessary for PRS̄ to

exist, the formula (4.18) is still valid but T now runs over all Young diagrams with no

more than N rows, or equivalently c1(T ) ≤ N . We can check (4.18) easily in cases such as

(R,S) = ([1], [1]), ([1], [2]), ([1], [2, 1]), ([2], [2, 1]).
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5. Examples of projectors

In this section, we give some examples of projectors. The derivation of k = 0 projectors

for some cases based on (4.9) is given in appendix A.1.

5.1 V ⊗m ⊗ V̄

We will now give the general k = 0 central projector for BN (m, 1)

PR ¯[1] =

(

1 −
1

NΩm

∑

i

Ω<i>
m−1Ci1̄

)

pR (5.1)

Ω<i>
m−1 is the omega factor for the i-th embedding of Sm−1 in Sm, where the i-th index is

removed from Sm. Ω<i>
m−1 satisfies

Ω<i>
m−1Ci1̄ = Ci1̄Ω

<i>
m−1 (5.2)

and

(ki)Ω<i>
m−1 = Ω<k>

m−1(ki) (5.3)

If we use

Ωm = Ω<k>
m−1



1 +
1

N

m
∑

i6=k

(ik)



 (5.4)

which was found useful in the study of loop equations in 2dYM [26], we get another

expression of the projector

PR ¯[1] =

(

1 −
1

N +
∑m

i6=k(ik)
Ci1̄

)

pR (5.5)

We show that the projector satisfies Ck1̄PR ¯[1] = 0. First, we obtain the following

equation

Ck1̄

∑

i

Ω<i>
m−1Ci1̄ = Ck1̄



Ω<k>
m−1Ck1̄ +

∑

i6=k

Ω<i>
m−1Ci1̄





= Ω<k>
m−1NCk1̄ +

∑

i6=k

Ck1̄(ki)Ω<i>
m−1

= Ck1̄Ω
<k>
m−1N



1 +
1

N

∑

i6=k

(ki)





= Ck1̄ΩmN (5.6)

where we have used (5.4). Using this equation, it is easy to show

Ck1̄PR ¯[1] =

(

Ck1̄ −
1

NΩm
Ck1̄

∑

i

Ω<i>
m−1Ci1̄

)

pR

=

(

Ck1̄ −
1

NΩm
Ck1̄ΩmN

)

pR

= 0 (5.7)
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We will now show, using (4.2), that this agrees with the Gross-Taylor dimension for-

mula [22]. The trace of the first term in (5.1) is

trm,1(pR) =
dR

m!

∑

R

χR(σ)trm,1(σ)

=
dR

m!

∑

R

χR(σ)NKσ+1 (5.8)

The trace of the second term in (5.1) is

trm,1

(

1

NΩm
Ω<i>

m−1Ci1̄pR

)

=
dR

NχR(Ωm)

∑

i,j

trm,1(Ω
<i>
m−1Ci1̄pR)

=
dR

NχR(Ωm)

∑

i

trm(Ω<i>
m−1pR)

=
dR

NχR(Ωm)
DimR

∑

i

χR(Ω<i>
m−1)

=
dR

m!
Nm−1

∑

i

χR(Ω<i>
m−1)

=
dR

m!

∑

σ

χR(σ)NKσ+1σ1
1

N2
(5.9)

In the last step, we have used the following equation,

m
∑

i=1

χR(Ω<i>
m−1) =

m
∑

i=1

∑

σ∈S<i>
m−1

χ(σ)NKσ−m

=
∑

σ∈Sm

σ1χ(σ)NKσ−m. (5.10)

where σ1 is the number of 1-cycles in σ. Hence

trm,1(PR ¯[1]) =
dR

m!

∑

R

χR(σ)NKσ+1
(

1 −
σ1

N2

)

(5.11)

which can be recognised as dRDimR[1̄] using [22].

5.2 Specific examples: V ⊗2 ⊗ V̄

In this case, we have two k = 0 projectors

P[2] ¯[1] =

(

1 −
1

N + 1
C

)

p[2]

P[12] ¯[1] =

(

1 −
1

N − 1
C

)

p[12] (5.12)

where C ≡ C11̄ + C21̄ commutes with any element in C[S2]. A k = 1 projector is given by

the sum of the second terms of k = 0 projectors

P (k=1,γ+=[1],γ−=∅) =
1

N + s
C =

∑

R

P
(k=1,γ+=[1],γ−=∅)

R ¯[1]
(5.13)
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where

P
(k=1,γ+=[1],γ−=∅)

[2] ¯[1]
=

1

N + 1
Cp[2]

P
(k=1,γ+=[1],γ−=∅)

[12] ¯[1]
=

1

N − 1
Cp[12] (5.14)

which are symmetric projectors.

5.3 Specific examples: V ⊗3 ⊗ V̄

In this case, we have three k = 0 projectors

P[3] ¯[1] =

(

1 −
1

N + 2
C

)

p[3]

P[13] ¯[1] =

(

1 −
1

N − 2
C

)

p[13]

P[2,1] ¯[1] =

(

1 −
N

(N2 − 1)
C −

1

(N2 − 1)
D

)

p[2,1] (5.15)

where C ≡ C11̄ +C21̄ +C31̄ and D ≡ C11̄s2 +C21̄s1s2s1 +C31̄s1 commute with any element

in C[S3]. Some useful formulae are given in appendix A.2.1.

We have two k = 1 projectors

P (k=1,γ+=[2],γ−=∅) =
1

N + 2
Cp[3] +

1

2

1

N − 1
(C + D)p[2,1]

= P
(k=1,γ+=[2],γ−=∅)

[3] ¯[1]
+ P

(k=1,γ+=[2],γ−=∅)

[2,1] ¯[1]

P (k=1,γ+=[12],γ−=∅) =
1

N − 2
Cp[13] +

1

2

1

N + 1
(C − D)p[2,1]

= P
(k=1,γ+=[12],γ−=∅)

[13] ¯[1]
+ P

(k=1,γ+=[12],γ−=∅)

[2,1] ¯[1]
(5.16)

Each term in the r.h.s. is a symmetric projector. Therefore, we have seven symmetric

operators and five central Brauer projectors. The decomposition of central Brauer projec-

tors into symmetric projectors in (5.16) can be understood in terms of the decomposition

of Brauer irreps in terms C[S3 × S1] irreps. For example, we know using (3.13) that the

(k = 1, γ+ = [2], γ− = ∅) irrep of BN (3, 1) contains the direct sum of irreps ([3], [1]) and

([2, 1], [1]) of C[S3 × S1], each with unit multiplicity.

5.4 Specific examples: V ⊗2 ⊗ V̄ ⊗2

We have four k = 0 projectors

PRS̄ =

(

1 −
1

(N + s + s̄)
C(1) +

1

(N + s)(N + s + s̄)
C(2)

)

pRp̄S (5.17)

where R = [2] or [12], S = [2] or [12], s = (12), s̄ = (1̄2̄) and

C(1) = C11̄ + C12̄ + C21̄ + C22̄ C(2) = C11̄C22̄ + C12̄C21̄ (5.18)
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which commute with any element in C[S2 × S2]. Some useful formulae are given in ap-

pendix A.2.2. k 6= 0 central Brauer projectors are given by

P (k=1,γ+=[1],γ−=[1]) =
1

(N + s + s̄)

(

C(1) −
2

N
C(2)

)

P (k=2,γ+=∅,γ−=∅) =
1

N(N + s)
C(2) (5.19)

These two k 6= 0 central Brauer projectors can be written as the sum of symmetric projec-

tors as

P (k=1,γ+=[1],γ−=[1]) =
∑

R,S

P
(k=1,γ+=[1],γ−=[1])

RS̄

P (k=2,γ+=∅,γ−=∅) =
∑

R,S

P
(k=2,γ+=∅,γ−=∅)

RS̄
(5.20)

where

P
(k=1,γ+=[1],γ−=[1])

RS̄
=

1

(N + s + s̄)

(

C(1) −
2

N
C(2)

)

pRp̄S

P
(k=2,γ+=∅,γ−=∅)

RS̄
=

1

N(N + s)
C(2)pRp̄S (5.21)

Because of

C(2)p[2]p̄[1,1] = C(2)p[1,1]p̄[2] = 0 (5.22)

which can be easily checked using C(2)s = C(2)s̄, P
(k=2,γ+=∅,γ−=∅)

[2] ¯[12]
and P

(k=2,γ+=∅,γ−=∅)

[12] ¯[2]
vanish. Therefore we have ten symmetric projectors and six central Brauer projectors.

5.5 Specific examples: composites of symmetric and anti-symmetric

We write down projectors corresponding to an AdS giant and an AdS anti-giant ([m], [n]),

an S-giant and an S-anti-giant ([1m], [1n]), and a composite of an AdS giant and an S

anti-giant ([m], [1n]) or vice versa ([1m], [n]). We assume m ≥ n in this subsection.

We first define

C(1) =
∑

ij

Cij̄ C(2) =
1

2!

∑

i6=j

∑

k 6=l

Cik̄Cjl̄ · · ·

C(k) =
1

k!

∑

ia 6=ib

∑

ja 6=jb

Ci1j̄1
Ci2 j̄2

· · ·Cik j̄k
(5.23)

Using these, we obtain projectors for k = 0 representations:

(R,S) = ([m], [n])

P[m] ¯[n] =

(

1 −
1

N + m + n − 2
C(1)

+
1

(N + m + n − 3)(N + m + n − 2)
C(2) + · · ·

)

p[m]p̄[n]

=

(

1 +
n

∑

k=1

(−1)k
k

∏

l=1

1

(N + m + n − l − 1)
C(k)

)

p[m]p̄[n] (5.24)

– 21 –



J
H
E
P
1
1
(
2
0
0
7
)
0
7
8

(R,S) = ([1m], [1n])

P[1m] ¯[1n] =

(

1 +
n

∑

k=1

(−1)k
k

∏

l=1

1

(N − m − n + l + 1)
C(k)

)

p[1m]p̄[1n] (5.25)

(R,S) = ([m], [1n])

P[m] ¯[1n] =

(

1 +

n
∑

k=1

(−1)k
k

∏

l=1

1

(N + m − n)
C(k)

)

p[m]p̄[1n] (5.26)

(R,S) = ([1m], [n])

P[1m] ¯[n] =

(

1 +
n

∑

k=1

(−1)k
k

∏

l=1

1

(N − m + n)
C(k)

)

p[1m]p̄[n] (5.27)

In appendix A.3, we give a proof of Cij̄PRS̄ = 0 for these projectors. These expressions

correctly reduce to the relevant examples from subsections 5.1–5.4

6. Counting of operators

As observed in section 3.4 Brauer elements can be used to construct multi-trace local oper-

ators from complex matrices Φ,Φ†. We also observed that the counting of these multi-trace

operators is the same as counting symmetric elements in BN (m,n), which are elements that

commute with the C[Sm ×Sn] sub-algebra of BN (m,n). A class of symmetric elements are

symmetric projectors. These projectors have appeared in sections 4 and 5 as summands in

central Brauer projectors. This relation between central Brauer projectors and symmetric

projectors corresponds to the group theory counting of irreps of BN (m,n) in V ⊗m ⊗ V̄ ⊗n

weighted by the multiplicity of C[Sm × Sn] irreps. So the number of symmetric projectors

Ns(m,n) is given by

Ns(m,n) =
∑

γ

∑

A

Mγ
A (6.1)

where A labels irreps of the symmetric group Sm ×Sn. It is given by a pair (α, β) which is

a pair of partitions of m,n respectively. Using the expression (3.13) for the multiplicities

we obtain

Ns(m,n) =

min(m,n)
∑

k=0

∑

γ+⊢(m−k)

∑

γ−⊢(n−k)

∑

α⊢m

∑

β⊢n

(

∑

δ⊢k

g(δ, γ+;α)g(δ, γ−;β)

)

(6.2)

The most general symmetric element of BN (m,n) is not necessarily a projector, but we can

argue that the most general element is a symmetric branching operator, a special case of

which is a projector. These will be discussed in more detail in section 7. They are counted

by a Nsb

Nsb =
∑

γ

∑

A

(Mγ
A)2

=

min(m,n)
∑

k=0

∑

γ+⊢(m−k)

∑

γ−⊢(n−k)

∑

α⊢m

∑

β⊢n

(

∑

δ⊢k

g(δ, γ+;α)g(δ, γ−;β)

)2

(6.3)
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At large N , i.e m+n < N the counting of traces is equivalent to a problem of counting

necklaces with coloured beads, which is solved by Polya theory. In this large N case,

the counting of gauge invariant operators by Polya theory agrees with the counting in

terms of Brauer algebras. When we drop the restriction and deal with finite N effects, the

connection to Brauer algebras allows a simple solution of the finite N counting problem.

The sums over Brauer irreps are reduced to those which appear in the decomposition of

V ⊗m ⊗ V̄ ⊗n. This will be discussed further in section 8. For other recent discussions of

finite N matrix counting problems see [37 – 39].

The counting of traces ( at large N ) is given by Polya theory as

T (x, y) =

∞
∏

n=1

1

(1 − xn − yn)

=
∞

∑

m=0,n=0

t(m,n)xmyn (6.4)

The coefficients t(m,n) count the number of traces with m copies of Φ and n copies of Φ†.

For a recent discussion of this in the physics literature see [40]. We are led, from the above

discussion, to

Nsb(m,n) = t(m,n) (6.5)

There are a number of interesting cases where the multiplicities Mγ
A = Mγ

α,β are all

either 1 or 0. In these cases Ns(m,n) = Nsb(m,n) = t(m,n). One class of such examples is

BN (m, 1). In this case t(m, 1) can be obtained by calculating the derivative of ∂T (x,y)
∂y

|y=0.

∂T (x, y)

∂y
|y=0 =

1

1 − x

∞
∏

n=1

1

(1 − xn)

=
∞

∑

m1=0

xm1

∞
∑

m2=0

p(m2)x
m2

=
∞
∑

m=0

xm
m

∑

k=0

p(k) (6.6)

where p(k) is the number of partitions of k. Hence

t(m, 1) =

m
∑

k=0

p(k) (6.7)

This satisfies a recursion relation

t(m + 1, 1) = p(m + 1) + t(m, 1) (6.8)

The same recursion relation can be derived for Ns(m, 1). The sum over k for Ns(m, 1)

has two terms. The k = 0 term gives p(m)p(1) = p(m). To get the second term, we sum

over Young diagrams R of m boxes. Let such a diagram have c1 columns of length 1, c2
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columns of length 2 etc. In other words j corresponds to column length and cj gives to

multiplicity of that column length in the Young diagram of R. So m =
∑m

j=0 jcj . For each

Young diagram the factor
∑

R

∑

γ+⊢(m−1) g(γ+, [1];R) is equal to the number of ways of

removing a box from R to get a legal Young diagram of m − 1 boxes. This can be seen to

be equal to the number of non-zero column length multiplicities cj ’s. Hence,

Ns(m, 1) =
∑

R⊢m

(1 + number of ways of removing a box from R ) (6.9)

Now (1+ number of ways of removing a box from R ) is equal to number of way of adding

a box to R. Hence

Ns(m, 1) =
∑

R⊢m

(1 + number of ways of removing a box from R )

=
∑

R⊢m+1

( number of ways of removing a box from R ) (6.10)

But we also know that

Ns(m + 1, 1) = p(m + 1) +
∑

R⊢m+1

( number of ways of removing a box from R ) (6.11)

Hence Ns(m+1, 1) = p(m+1)+Ns(m, 1). This the same recursion relation as for t(m, 1).

It is also easily checked that Ns(1, 1) = t(1, 1). This proves the desired identity between

the number of traces and the number of Brauer irreps weighted with symmetric group

decomposition multiplicities.

We have also checked for BN (m, 2) in the cases m = 1 · · · 5 that Ns(m, 2) = Nsb(m, 2) =

t(m, 2). For cases such as BN (3, 3), we find t(3, 3) = Nsb(3, 3) = 38 whereas Ns(3, 3) = 36.

We have also checked Nsb(4, 3) = t(4, 3);Nsb(4, 4) = t(4, 4);Nsb(4, 5) = t(4, 5);Nsb(5, 5) =

t(5, 5). Based on these non-trivial examples, and the discussion of sections 3.4, 7 we expect

that (6.5) is true in general. At finite N there is a cutoff on γ in (6.3) following from (3.8)

of c1(γ+) + c1(γ−) ≤ N .

7. Orthogonal set of operators for brane-anti-brane systems.

A representation γ of BN (m,n) can be decomposed into irreducible representations A of

the C[Sm ×Sn] sub-algebra. The index A consists of a pair (α, β) where α is a partition of

m, and β is a partition of n, which is expressed as α ⊢ m,β ⊢ n. An irrep A will generically

appear with multiplicity Mγ
A, and we will use an index i which runs over this multiplicity.

Let us denote by |γ;A,mA; i〉 an orthonormal set of vectors in the γ representation which

transforms in the i th copy of the state mA of the irrep A of the sub-algebra. Central

projectors for γ in the regular representation can be written as

P γ =
∑

i

∑

A,mA

|γ;A,mA; i〉〈γ;A,mA; i| (7.1)
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The construction of these projectors in terms of the algebra has been discussed at length

in section 4. Define

P γ
A,i =

∑

mA

|γ;A,mA; i〉〈γ;A,mA; i| (7.2)

Here we are not summing over A, i. As we will show these commute with C[Sm × Sn],

but not in general with BN (m,n). Examples of these symmetric projectors have also been

computed in section 5. These projectors belong to a more general class of symmetric

elements.

Qγ
A,ij =

∑

mA

|γ;A,mA; i〉〈γ;A,mA; j| (7.3)

Consider

hQγ
A,ijh

−1 =
∑

mA,nA,kA

DA
nAmA

(h)|γ;A,nA; i〉〈γ;A, kA; j|DA
mAkA

(h−1)

=
∑

nA,kA

DA
nAkA

(1)|γ;A,nA; i〉〈γ;A, kA; j|

=
∑

nA,kA

δnAkA
|γ;A,nA; i〉〈γ;A, kA; j|

= Qγ
A,ij (7.4)

The DA
nAmA

(h) are matrix elements of h in the irrep A. This shows that Qγ
A,ij commutes

with the subalgebra. This property is denoted by saying Qγ
A,ij are symmetric branching

operators. By using an expansion of a general element of the Brauer algebra in terms

of matrix elements of irreps as in [30] we expect it should be possible to prove that the

symmetric branching operators provide a complete set of symmetric elements in the Brauer

algebra This is supported by the counting examples we have done in section 6. Since

P γ
A,i = Qγ

A,ii we also have

hP γ
A,ih

−1 = P γ
A,i (7.5)

This property is expressed by saying P γ
A,i are symmetric projectors. Using the orthonor-

mality of the states we can derive

Qγ1

A,ijQ
γ2

B,kl = δγ1γ2δABδjkQ
γ1

A,il (7.6)

Associated with the symmetric elements Q, we can find a complete basis in the space

of local operators constructed from Φ,Φ† in four dimensional N = 4 SYM. It also gives a

complete basis of gauge invariant operators built from the matrices A†, B†. We will show

that this basis for operators diagonalises the correlators. We first discuss this in the context

of the matrix quantum mechanics.
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7.1 Reduced 1D matrix model: orthogonal basis using Brauer

It has been shown [1, 41, 42] that the reduction of the four-dimensional action on S3 × R

leads to the Hamiltonian and SO(2) symmetry

H = tr(A†A + B†B)

J = tr(A†A − B†B) (7.7)

The matrices obey the algebra

[Ai
j , A

† k
l ] = δi

lδ
k
j

[Bi
j, B

† k
l ] = δi

lδ
k
j

[Ai
j , B

† k
l ] = [Ai

j , B
k
l ] = [A† i

j , B† k
l ] = [A† i

j , B k
l ] = 0 (7.8)

Gauge invariant states are obtained by acting with traces of A† and B† on the vacuum,

e.g

Tr(A†)n|0 > E = J = n

Tr(B†)n|0 > E = −J = n

Tr(A†)n(B†)m|0 > E = n + m,J = n − m (7.9)

Among the states obtained by acting with A† a complete orthogonal set is obtained

from the Schur polynomials

χR(A†)|0 > (7.10)

They obey

< 0|χR(A)χS(A†)|0 >= δRS
n!DimR

dR
(7.11)

We would like to find a complete set of orthogonal states in the more general case where

both A† and B† are acting on the vacuum.

We claim that the operators trm,n

(

Σ(Qγ
A,ij

)

(A† ⊗ B†)
)

|0 > diagonalise the quantum

mechanical inner product

< 0|trm,n

(

Σ(Qγ2 †
A2,i2j2

)(A ⊗ B)
)

trm,n

(

Σ(Qγ1

A1,i1j1
)(A† ⊗ B†)

)

|0 >

= m!n!δγ1γ2δA1A2δi1i2δj1j2 dA1 Dimγ1 (7.12)

Consider the l.h.s. of (7.12). We can describe it diagrammatically as in figure 8. We

have used Q1, Q2 for Qγ1

A1,i1j1
, Qγ2 †

A2,i2j2
in the figures to keep them simple. It is understood

that the upper horizontal line is identified with the lower horizontal line, which expresses

the identification of tensor space indices for a trace. The sum over all Wick contractions

gives a sum over permutations in tensor space as in figure 9. An obvious diagrammatic

manipulation, which corresponds to an identity in tensor space, results in figure 10. This
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allows us to write

< 0|trm,n

(

Σ(Qγ2†
A2,i2j2

)(A ⊗ B)
)

trm,n

(

Σ(Qγ1

A1,i1j1
)(A† ⊗ B†)

)

|0 >

=
∑

α1∈Sm

∑

α2∈Sn

trm,n

(

(α1 ⊗ α2)Σ(Qγ2 †
A2,i2j2

)(α−1
1 ⊗ α−1

2 )Σ(Qγ1

A1,i1j1
)
)

= m!n!trm,n

(

Σ(Qγ2†
A2,i2j2

)Σ(Qγ1

A1,i1j1
)
)

= m!n!trm,n

(

Qγ2 †
A2,i2j2

Qγ1

A1,i1j1

)

= m!n!δγ1γ2δA1A2δi1i2trm,n(Qγ1

A1,j2j1
)

= m!n!δγ1γ2δA1A2δi1i2δj2j1dA1Dimγ1 (7.13)

The second line follows from the diagrammatics. The third line follows using (3.37 ). The

fourth line follows from (3.20). In the last line we have used the Schur-Weyl duality (3.8).

The factor Dimγ1 is the dimension of the GL(N) irrep labelled by γ1 and dA1 is the

dimension of the corresponding irrep of C[Sm × Sn]. This proves (7.12).

Using the relations between the symmetric projectors P γ
A,i or central projectors P γ in

terms of these symmetric branching operators, we can derive

< 0|trm,n(Σ(P γ2

A2,i2
))(A ⊗ B)trm,n(Σ(Qγ1

A1,i1j1
)(A† ⊗ B†))|0 >

= m!n!δγ1γ2δA1A2δi2i1δi2j1dA1Dimγ1

This is proportional to δi1j1 , which guarantees that the Qγ1

A1,i1j1
overlaps with a symmetric

projector if it is actually itself a symmetric projector. Considering the overlap between

operators constructed from two symmetric projectors, we have

< 0|trm,n(Σ(P γ2

A2,i2
))(A ⊗ B)trm,n(Σ(P γ1

A1,i1
)(A† ⊗ B†))|0 >

= m!n!δγ1γ2δA1A2δi1i2dA1Dimγ1 (7.14)

We can also show that central projectors corresponding to different irreps γ give or-

thogonal states:

< 0|trm,n(Σ(P γ2))(A ⊗ B)trm,n(Σ(P γ1)(A† ⊗ B†))|0 >

= m!n!δγ1γ2trm,n(P γ1) = m!n!δγ1γ2 d(B)
γ1

Dimγ1 (7.15)

In this equation d(B) is a Brauer dimension. This can be derived by relating P γ to the

Q operators, or applying the diagrammatics directly to the l.h.s. of (7.15) and using the

projector property P γ1P γ2 = δγ1γ2P
γ1 .

Recall from section 3 that Brauer irrep labels γ determine an integer k and partitions

γ+ ⊢ m − k, γ− ⊢ n − k. For k = 0, the irrep γ decomposes into a unique irrep γ+, γ−
of C[Sm ⊗ Sn]. This means that the k = 0 central projectors do not decompose into a

sum of multiple symmetric projectors. Another special property of the k = 0 projectors

becomes apparent when we consider the field theory operators, rather than Matrix quantum

mechanics operators.
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7.2 Orthogonal multi-matrix operators in 4D field theory

In the case of 4D field theory we associate gauge invariant Matrix operators, much as we

do in Matrix quantum mechanics. Now we consider : trm,n

(

Σ(Qγ
A,ij

)

(Φ ⊗ Φ†)
)

: . The

notation : O : for an operator O indicates that we have subtracted the short distance

singularities, to give an operator which will have no self-contractions inside correlators as

explained in the example in section 2. The orthogonality property of (7.12) has a direct

analog, with identical derivation

<: trm,n

(

Σ(Qγ2 †
A2,i2j2

)(Φ† ⊗ Φ)
)

: : trm,n

(

Σ(Qγ1

A1,i1j1
)(Φ ⊗ Φ†)

)

:>

= m!n!δγ1γ2δA1A2δi1i2δj1j2 dA1 Dimγ1 (7.16)

To be more explicit we would add the dependence on x1, x2 in the two operators, demon-

strating their location in R
4, and the overall factor (x1 − x2)

−2m−2n. We have chosen to

keep the notation simple, the position dependences can be added back easily if desired.

Likewise, analogously to (7.15) we have for the correlator of central projectors

< 0| : trm,n(Σ(P γ2))(Φ† ⊗ Φ) : : trm,n(Σ(P γ1)(Φ ⊗ Φ†)) : |0 >

= m!n!δγ1γ2trm,n(P γ1)

= m!n!δγ1γ2 d(B)
γ1

Dimγ1 (7.17)

The special property of the k = 0 projectors is that they are orthogonal to contractions

Cij̄ . In the special case of k = 0, and denoting γ+ = R, γ− = S,

Cij̄PRS̄ = 0 (7.18)

This means that the corresponding operators have no short distance singularities

: trm,n(Σ(P γ1)(Φ ⊗ Φ†)) : = trm,n(Σ(P γ1)(Φ ⊗ Φ†)) (7.19)

Any k = 0 irrep of Brauer determines a pair of Young diagrams (R,S) and a projector

PRS̄ . The nonsingular field theory operator trPRS̄(Φ ⊗ Φ∗) = trΣ(PRS̄)(Φ ⊗ Φ†) is our

proposal for a giant-anti-giant operator where R determines a giant and S determines an

anti-giant. These operators only exist when c1(R) + c1(S) ≤ N , as is clear from (3.8). We

will describe this cutoff as a non-chiral stringy exclusion principle, and we will discuss it

further in section 8. In the chiral case the proposal reduces to tr(PRΦ) = dRχR(Φ). For

k 6= 0 operators we expect that the subtraction will involve powers up to ǫ−2k in the short

distance subtraction.

7.3 Examples : BN (3, 1) and BN (2, 2)

We consider here some simple examples of BN (m,n) with m + n < N . Take for example

m = 3, n = 1. In this case there are 7 independent gauge invariant operators

(trΦ)3trΦ† trΦ3trΦ† trΦ2trΦtrΦ†

trΦ3Φ† trΦ2Φ†trΦ trΦ2trΦΦ† trΦΦ†(trΦ)2 (7.20)
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Σ 

A B0 0 A B

Σ (  Q  ) 1
(  Q  ) 

2

Figure 8: Diagrammatic representation of inner product
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α 

2 
α 

1 
α 

2 
α 

Σ 
2

α 

−  1 −  1 

(  Q  ) Σ Σ (  Q  ) 
1 2

Figure 9: Sum over all possible contractions leads to a sum over permutations in tensor space

In the case of m = 2, n = 2, we have 10 gauge invariant operators

trΦ2tr(Φ†)2 (trΦ)2tr(Φ†)2 trΦ2(trΦ†)2 (trΦ)2(trΦ†)2

trΦ2Φ†trΦ† trΦtrΦ(Φ†)2 trΦtrΦΦ†trΦ† (trΦΦ†)2

trΦ2(Φ†)2 trΦΦ†ΦΦ† (7.21)

In both cases, these listed operators do not form orthogonal bases. A complete set of

orthogonal bases of gauge invariant operators is obtained by taking linear combinations of

these operators, and finding such a set is solved by the use of symmetric projectors. It is

explicitly shown in appendix A.4. By making the following replacement

Φ → A†, Φ† → B† (7.22)

we obtain a complete set of orthogonal gauge invariant states in the quantum mechanics.
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Figure 10: Tensor space identities allow the diagrammatic simplification

8. Physical interpretation of the spectrum of multi-traces

We have provided a basis of multi-trace constructed from Φ,Φ† which diagonalise the

two-point function in free 4D N = 4 SYM (7.16), by using the symmetric branching

operators Qγ
A,ij. By the operator-state correspondence, these give rise to orthogonal states.

The symmetric branching operators also give an orthogonal basis of states in the reduced

quantum mechanics of two matrices (7.13). The same combinations of multi-traces also

give diagonal correlators in the zero-dimensional matrix model (2.7).

The label γ in (3.8) identifies simultaneously the irreps of U(N) and BN (m,n) which

appear in the decomposition of V ⊗m ⊗ V̄ ⊗n. In the Young diagram description of U(N)

negative row lengths are allowed. The set of positive rows defines γ+ and the set of

negative rows define γ−. For example with m = 6, n = 4, N = 6 a possible γ is γ =

[3, 2, 1,−1,−1,−2]. This determines γ+ = [3, 2, 1] , γ− = [2, 1, 1] and k = 0. An example

such as γ = [2, 1, 1, 1,−1,−2] determines k = 1, γ+ = [2, 1, 1, 1], γ− = [2, 1]. Given a pair of

Young diagrams R,S with m,n boxes respectively, and c1(R)+ c1(S) ≤ N , there is always

a γ with k = 0

γi = ri for i = 1 · · · c1

γi = 0 for i = c1 + 1 . . . N − c̄1

γi = −sN−i+1 for i = N − c̄1 + 1 · · ·N (8.1)

This γ corresponds to k = 0, γ+ = R, γ− = S. For such a γ, the Qγ
A,ij reduces to a single

central projector, which we have called PRS̄ . The multi-trace operator associated to this

projector is our proposal for the ground state of the brane-anti-brane system made as a

composite of the brane described by R and the anti-brane described by S. The k = 0
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projectors are annihilated by the contraction operators in BN (m,n) as a result they have

no short distance singularities. As explained in section 2, the Wick-contractions between

Φ and Φ∗ result in a contraction in tensor space. When we construct a composite operator

by composing a projector PRS̄ with Φ ⊗ Φ∗ in V ⊗m ⊗ V̄ ⊗n i.e trm,n(PRS̄Φ ⊗ Φ∗), and we

consider the short distance subtractions we encounter precisely the products Cij̄PRS̄ = 0.

Hence the short-distance singularities in trm,n(PRS̄Φ ⊗ Φ∗) vanish without the need for

subtractions. Equivalently

: trm,n(PRS̄Φ ⊗ Φ∗) : = trm,n(PRS̄Φ ⊗ Φ∗) (8.2)

The construction of a composite γ from the pair R,S as in (8.1) is nothing but the ad-

dition of the U(N) weights associated with R and S̄, which also appears in 2dYM. The

U(N) weights are related to generalised spacetime charges connected to the integrability

of the theory [44] and from this point of view it may be possible to develop a spacetime

interpretation of the addition of weights for the composite system.

The critical reader might object that we should not expect an exact eigenstate of the

string theory Hamiltonian corresponding to a brane-anti-brane configuration which should

be unstable due to tachyon condensation. However, at zero Yang-Mills coupling, or the

tensionless string limit, the tachyon formally becomes massless. So we should expect a map

between brane-anti-brane configurations and exact eigenstates to be possible. Even in the

opposite limit of semiclassical gravity, with a probe description of giants and anti-giants

following [2] we might expect that when the brane and anti-brane are far from each other

there should be at least an approximate eigenstate corresponding to their composite. In fact

the description of static non-supersymmetric supergravity solutions in terms of brane-anti-

brane parameters ( for a recent discussion and references to the relevant literature see [43]

) suggests that it might also be possible to extrapolate an appropriate brane-anti-brane

description of the eigenstates of the free Yang-Mills Hamiltonian to the supergravity regime,

where back-reaction on spacetime would produce a non-supersymmetric generalization of

the solutions of LLM [12].

The multi-traces constructed from PRS̄ thus give us the lowest energy state we can

associate to the composite of brane R and anti-brane S. For the more general Q operators,

associated with γ(k ≥ 1), a natural proposal is that for γ = (k, γ+ ⊢ m− k, γ− ⊢ n− k) we

have states of energy m+n, which are excitations of the brane-anti-brane system (γ+, γ−).

The excitations carry 2k units of energy and have a multiplicity
∑

R⊢m,S⊢n

(Mγ
RS)2 (8.3)

This multiplicity and the form of the corresponding operators Qγ
(RS),ij suggest that they

should also be interpreted as states arising from a descent procedure from the brane-anti-

brane pair R,S of energies m,n. The descent procedure in question involves partons (

constituents of the brane each carrying a unit of angular momentum each ) and anti-

partons ( constituents of the anti-brane each carrying a unit of angular momentum ). The

integer k can be interpreted as the number of partons and anti-partons, from the brane-

anti-brane pair R,S combining to form a stringy excitation with 2k units of energy. For
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fixed initial brane-configuration R,S and final brane configuration (γ+, γ−) the multiplicity

(Mγ
RS)2 and the matrix structure of the associated operators Qγ

(RS),ij (7.6) is suggestive of

a Chan-Paton interpretation of the i, j indices labelling the stringy excitations. It would be

very interesting to construct a dynamical model of the stringy excitations and the descent

procedure which precisely accounts for the multiplicity Mγ
RS known in terms of Littlewood-

Richardson coefficients (3.13). A useful analogy might be the role of the elementary field

Φ as a parton for long strings in the BMN limit [35], which is developed in terms of a

concrete string bit model in [45].

The description of brane-anti-branes in terms of irreps γ of the Brauer algebras

BN (m,n) or U(N) reveals an interesting finite N cutoff on the brane-anti-brane configu-

rations. Let us go back to the example of m = 6, n = 4, N = 6. Since γ has exactly 6 rows,

no choice of γ will give a pair such as γ+ = [2, 2, 1, 1], γ− = [2, 1, 1]. In general we have the

bound

c1(γ+) + c1(γ−) ≤ N (8.4)

We will call this the non-chiral stringy exclusion principle, following the terminology of

stringy exclusion principle for the cutoff in the holomorphic case [46]. The bound on

the individual branes or anti-branes c1(γ+) ≤ N and c1(γ−) ≤ N can be understood in

the semiclassical probe picture [2] or the supergravity picture [12] and a more speculative

explanation of related cutoffs on single traces in terms of non-commutative spacetime was

explored [47]. An analogous spacetime understanding of the the new bound on composites

is a fascinating challenge for the spacetime picture. If we are given a pair γ+ = R, γ− = S

violating the bound we can still form a U(N) irrep γ by adding the corresponding highest

weights as follows

γi = ri for i = 1 · · · c1 − E

γi = ri − sN−i+1 for i = c1 − E + 1 · · · c1

γi = −sN−i+1 for i = c1 + 1 · · ·N (8.5)

It is easy to check that γi ≥ γi+1 as required. This γ has k =
∑c1

i=c1−E+1 min(ri, sN−i+1),

so that 2k is the number of boxes removed after superposing the Young diagram of R

with that of S̄ to get the γ. Following the interpretation above, this says that when

the bound is violated, the composite brane-anti-brane system is actually a stringy excited

state of a brane-anti-brane pair (γ+, γ−) determined by (8.5) with energy m + n − 2k =

m + n− 2
∑c1

i=c1−E+1 min(ri, sN−i+1), which has been excited by a stringy excitation with

2k units of energy.

We will now describe some technical consequences of the non-chiral stringy exclusion

principle. Since pairs γ = (k = 0, R ⊢ m,S ⊢ n) do not appear in (3.8) when c1(R)+c1(S) >

N , we may ask what happens to the general formulae for PRS̄ we wrote in this case. It

turns out that in some cases, the projector becomes ill-defined with 0 appearing in the

denominator. In other cases, it can be seen that the projector acting on V ⊗m ⊗ V̄ ⊗n

gives zero. This means that trm,n(PRS̄Φ ⊗ Φ∗) vanishes. Since the first term in PRS̄ is

pRpS, this means that the vanishing leads to a matrix identity for χR(Φ)χS(Φ†) in terms

of multi-traces where Φ,Φ† appear in the same trace.
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Before getting to a non-chiral example we review an analog in the chiral case. Matrix

identities follow from the fact that the n-fold antisymmetiser acting on the N -dimensional

space V vanishes when n > N .

p[1n]V
⊗n = 0 (n > N) (8.6)

Let us consider an N = 2 matrix φ. In this case, we have the following identity

tr(φ3) =
3

2
(trφ)tr(φ2) −

1

2
(trφ)3 (8.7)

which is a direct consequence of (8.6) because (8.7) can be rewritten as

tr3(p[13]φ) =
1

6

(

(trφ)3 − 3(trφ)tr(φ2) + 2tr(φ3)
)

= 0 (8.8)

Now we consider a non-chiral example of matrix identities following from the vanishing

of projectors. For example, we can show

P[12] ¯[1]V
⊗2 ⊗ V̄ = 0 (N = 2) (8.9)

as follows. For a state w = v1 ⊗ v2 ⊗ v̄1 ∈ V ⊗2 ⊗ V̄ , we have

p[12]w = v[1 ⊗ v2] ⊗ v̄ (8.10)

and

p[12]Cw =
2

∑

k=1

v[k ⊗ v2] ⊗ v̄k

= v[1 ⊗ v2] ⊗ v̄1 (8.11)

Hence using (5.12), with N = 2 we obtain

P[12] ¯[1]w = (1 − C) p[12]w = 0 (8.12)

From this equation, for two N = 2 matrices A,B, we have

tr2,1(P[12] ¯[1]A ⊗ A ⊗ BT ) = tr2,1(Σ(P[12] ¯[1])A ⊗ A ⊗ B) = 0 (8.13)

This gives the following matrix identity,

tr2(p[12]A)tr(B) = tr(A)tr(AB) − tr(A2B) (8.14)

where

tr2(p[12]A) =
1

2
(trA)2 −

1

2
tr(A2). (8.15)

For two N = 3 matrices A and B, we have the following identity

tr2(p[12]A)tr2(p[12]B) = trAtrBtrAB − trA2BtrB − trAtrAB2 + trA2B2

−
1

2
trABtrAB +

1

2
trABAB (8.16)
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This equation comes from

tr2,2(P[12][1̄2]A
⊗2 ⊗ BT ⊗2) = tr2,2(Σ(P[12][1̄2])A

⊗2 ⊗ B⊗2) = 0 (8.17)

which is a consequence of

P[12][1̄2]V
⊗2 ⊗ V̄ ⊗2 = 0 (N = 3) (8.18)

The skeptical reader might wonder if we can bypass the nonchiral exclusion princi-

ple (8.4) simply by proposing : χR(Φ)χS(Φ†) : as a dual. The first objection to this is

that such a proposal does not belong to a diagonal basis. The PRS̄ are a special case of

the complete orthogonal set of symmetric branching operators of section 7. But a more

startling failure of the naive proposal is the fact explained above, that at finite N , the

products of characters become equal to sums of multi-traces where products ΦΦ† appear

within the same trace.

9. Summary and discussion

For any Young diagram R, there is an operator χR(Φ) and a spherical D-brane giant

graviton. For any Young diagram S, there is a spherical D̄3-brane giant graviton and cor-

responding operator χS(Φ†). χR(Φ) is a holomorphic continuation of characters χR(U) of

the unitary group. We can view χS(Φ†) is a continuation of χS(U †). Associated with a pair

of Young diagrams, are “coupled representations” of U(N) which play an important role in

2dYM. The coupled character is obtained from the trace in V ⊗m⊗ V̄ ⊗n of a projector (4.1).

These projectors are constructed from Brauer algebras BN (m,n). These same projectors

can be used to construct composite operators involving the complex matrix Φ and its con-

jugate Φ∗. We have given a number of useful general formulae for these operators in section

4, and discussed several examples in section 5 and the appendices. These operators are

proposed as candidate gauge theory duals for brane-anti-brane systems. They exist when

c1(R) + c1(S) ≤ N . They have an interesting property that they are unchanged by short

distance subtractions, generalising the simple example discussed in section 2. We also de-

scribed the complete set of operators that can be constructed from Φ,Φ†. They are related

to symmetric elements of BN (m,n), i.e those invariant under conjugation by the subalgebra

Sm ×Sn. We gave a group theoretic counting of these operators and described correspond-

ing branching operators which lead to an orthogonal basis for the two point functions.

Our calculations have been done in the zero coupling limit g2
Y M = 0. In the case of BPS

objects, these results can be extrapolated to strong coupling using non-renormalisation the-

orems, where they apply to the weakly coupled gravity regime. In this non-supersymmetric

set-up, important physics should be contained in the mixing with fields other than Φ,Φ†

which occurs when the coupling is turned on. The basis of operators described here should

be a natural starting point for perturbation away from zero coupling. It will be interest-

ing to apply the technology for constructing operators corresponding to strings between

branes, developed in [48 – 50] to study the strings between brane and anti-brane using our

proposed brane-anti-brane operators trm,n(PRS̄Φ⊗Φ∗). This should shed light on tachyon
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condensation (see [51, 52] for reviews) in AdS from the dual gauge theory point of view, in

regimes not accessible to perturbative string theory.

We believe we have made a convincing case that brane-anti-brane giant graviton sys-

tems at zero coupling are dual to gauge invariant operators constructed from k = 0 pro-

jectors PRS̄ (which belong to a complete orthogonal family of branching operators Qγ
A,i,j

outlined in section 7.2). Further work can be done to give more explicit formulae for the

branching operators. However further independent tests, beyond orthogonality and com-

pleteness, can be considered. If we can find a regime at strong ‘t Hooft coupling where the

energy of giant-anti-giant gravitons is calculable in the space-time picture, we can conduct

comparisons between the dimensions of our proposed operators and the strong coupling

results. For example if the angular momenta of the giant-anti-giant pair are such that

their separation is large enough for effects of tachyons to be neglected, then the ground

state energy of the pair will be simply the sum of individual brane and anti-brane energies.

Since the dimension of our proposed composites at zero coupling is also a sum, a consis-

tency check on our proposal would be that this dimension flows to the same value at strong

coupling. The simplest way this can happen is if the dimension of the composite is not

renormalised. Such a scenario can be checked by 1-loop computations. In any case, the

1-loop anomalous dimensions will be of interest in further exploring the duality between

composites of holo-antiholomorphic operators and brane-antibrane systems.

We have related the counting of multi-trace operators to Brauer algebras and using this

interpretation of the counting we have proposed a brane-anti-brane interpretation of the

operators (section 8). We uncovered a non-chiral stringy exclusion principle (8.4): a cut-off

on brane-anti-brane states which is stronger than the cutoff on the individual branes and

anti-branes. These general lessons on the counting and finite N effects should be relevant

at strong coupling.

The AdS/CFT set-up thus has allowed the unique opportunity to find exact quantum

operators corresponding to brane-anti-branes. It is natural to ask if there are lessons here

for brane-anti-brane physics more generally. Brane-anti-brane degrees of freedom are used

in black-hole counting. It has been generally a confusing issue, whether we can expect these

unstable configurations to correspond to exact eigenstates of a String Theory Hamiltonian.

The lesson here is that we can certainly expect exact eigenstates because we are taking

a limit of zero tension, where the tachyon becomes massless. In this limit we have been

able to construct exact operators for brane-anti-brane systems using Brauer algebras, and

classified the stringy excitations of the brane-anti-brane systems using these algebras. It

will be interesting to see how far one can extend this discussion to more general backgrounds

and to the counting of the degrees of freedom of stringy non-supersymmetric systems such

as those considered in [53].

One of our main objects of interest in this paper has been about projectors in the

Brauer algebra. Another algebraic structure which captures many properties of tachyon

condensation is K-theory [54 – 56]. The algebraic version of K-theory involves equivalence

classes of projectors. It is interesting to ask if the Brauer algebras, perhaps in an inductive

limit of m,n → ∞, and their connections to K-theory, might provide an algebraic structure

which is relevant to brane-anti-brane systems in a general background.
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A. Calculations in Brauer algebras and applications to gauge theory op-

erators

A.1 Calculation of duals of Brauer elements

In this section, we consider the duals of Brauer elements. In particular we use (4.8) to find

explicit formulae for the dual of the identity 1∗ for some examples. We use this to obtain

projectors for k = 0 representations using the formula (4.7). In the calculation of 1∗, we

need values of the character of the symmetric group. They are listed in [34], for example.

A.1.1 Duals for BN (1, 1)

BN (1, 1) can be mapped to C[S2]. The Ω2 factor in S2 is given by Ω2 = 1 + s1/N , and the

inverse of it is

Ω−1
2 =

N2

N2 − 1

(

1 −
s1

N

)

(A.1)

Because the inverse map Σ−1 of s1 is given by C11̄, 1∗ can be calculated as

1∗ =
1

N2 − 1

(

1 −
C11̄

N

)

(A.2)

Then using

t[1] ¯[1] = N2 − 1 (A.3)

we get a k = 0 projector

P[1][1] = tλ1∗ = 1 −
C11̄

N
(A.4)

which can be easily checked to satisfy (P[1][1])
2 = P[1][1] using (C11̄)

2 = NC11̄.

A.1.2 Duals for BN (2, 1)

In this case, 1∗ is given by

1

(3!)2

∑

T

d2
T

dimT

∑

σ∈S3

χT (σ−1)Σ−1 (σ) (A.5)
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where T is an irrep of S3. The relationship between BN (2, 1) and C[S3] is

Σ−1(T[2,1]) = s1 + C

Σ−1(T[3]) = Cs1 (A.6)

where Tr is the sum of elements belonging to a conjugacy class r which is labelled by the

cycle structure. Using the values of the character1

χ[3](1) = d[3] = 1 χ[3](s1) = 1 χ[3](s1s2) = 1

χ[13](1) = d[13] = 1 χ[13](s1) = −1 χ[13](s1s2) = 1

χ[2,1](1) = d[2,1] = 2 χ[2,1](s1) = 0 χ[2,1](s1s2) = −1 (A.7)

1∗ can be calculated as

1∗ =
1

N(N − s)(N + 2s)

(

1 −
1

NΩ2
C

)

(A.8)

Using

t[2] ¯[1] =
1

2
N(N − 1)(N + 2)

t[1,1] ¯[1] =
1

2
N(N + 1)(N − 2) (A.9)

we obtain two k = 0 projectors corresponding to R = [2] or [12]

PR ¯[1] = tR ¯[1]1
∗m!

dR
pR

= tR ¯[1]

1

N

1

(N − s)(N + 2s)

(

1 −
1

NΩ2
C

)

2pR

=

(

1 −
1

NΩ2
C

)

pR (A.10)

where we have used sp[2] = p[2] and sp[1,1] = −p[1,1].

A.1.3 Duals for BN (2, 2)

In this case, 1∗ is given by

1

(4!)2

∑

T

d2
T

dimT

∑

σ∈S4

χT (σ−1)Σ−1 (σ) (A.11)

where T is an irrep of S4. After some calculations using the values of the character and

the mapping rule

Σ−1(T[2,12]) = C + s + s̄

Σ−1(T[3,1]) = C(s + s̄)

Σ−1(T[4]) = Css̄ + C(2)s

Σ−1(T[2,2]) = C(2) + ss̄ (A.12)

1Note that χR(g) = χR(g′) when g and g
′ are conjugate each other.
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we get the following expression

1∗ =
1

N2(N2 − 1)(N2 − 4)(N2 − 9)
×

(

N4 − 8N2 + 6 − N(N2 − 4)Σ−1(T[2,12]) + (2N2 − 3)Σ−1(T[3,1])

−5NΣ−1(T[4]) + (N2 + 6)Σ−1(T[2,2])
)

(A.13)

=
1

N2(N2 − 1)(N2 − 4)(N2 − 9)
×

(

N4 − 8N2 + 6 − N(N2 − 4)(C + s + s̄) + (2N2 − 3)C(s + s̄)

−5N(Css̄ + C(2)s) + (N2 + 6)(C(2) + ss̄)
)

(A.14)

where C = C11̄ + C12̄ + C21̄ + C22̄ and C(2) = C11̄C22̄ + C12̄C21̄.

We consider (R,S) = ([2], [2]). The use of sp[2] = p[2] and s̄p̄[2] = p̄[2] simplifies the

expression of 1∗p[2]p̄[2] as

1∗p[2]p̄[2] =
1

N2(N − 1)(N + 3)

(

1 −
1

N + 2
C +

1

(N + 1)(N + 2)
C(2)

)

(A.15)

Using

t[2] ¯[2] =
1

4
N2(N − 1)(N + 3) (A.16)

we obtain a projector corresponding to (R,S) = ([2], [2])

P[2] ¯[1] =

(

1 −
1

N + 2
C +

1

(N + 1)(N + 2)
C(2)

)

p[2]p̄[2] (A.17)

Other cases (R,S) = ([12], [12]), ([2], [12 ]), ([12], [2]]) can be done similarly to obtain (5.17).

A.1.4 Duals for BN (3, 1)

Because BN (3, 1) can also be mapped to C[S4], we can use the equation (A.13). Though

both of these two cases BN (2, 2) and BN (3, 1) can be mapped to the same group algebra

C[S4], the mapping rule is different, and the mapping rule in this case is given by

Σ−1(T[2,12]) = C + T[2,1]

Σ−1(T[3,1]) = CT[2,1] − D + T[3]

Σ−1(T[4]) = CT[3]

Σ−1(T[2,2]) = D (A.18)

where C = C11̄ + C21̄ + C31̄, D = s2C11̄ + s1s2s1C21̄ + s1C31̄. Note that T in the l.h.s.

of (A.18) is an element of S4 while T in the r.h.s. is an element of S3. Then we obtain

1∗ =
1

N2(N2 − 1)(N2 − 4)(N2 − 9)
×

(

N4 − 8N2 + 6 − N(N2 − 4)(C + T[2,1]) + (2N2 − 3)(CT[2,1] − D + T[3])

−5N(CT[3]) + (N2 + 6)(s2C11̄ + s1s2s1C21̄ + s1C31̄)
)

(A.19)
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Note that T is a central element, and using TrpR = (χR(Tr)/dR)pR, we get

1∗p[3] =
1

N(N2 − 1)(N + 3)

(

1 −
1

N + 2
C

)

1∗p[13] =
1

N(N2 − 1)(N − 3)

(

1 −
1

N − 2
C

)

1∗p[2.1] =
1

N2(N2 − 4)

(

1 −
N

N2 − 1
Ω<i>

2 Ci1̄

)

p[2.1] (A.20)

where we have used sip[3] = p[3], sip[13] = −p[13] and the values of the character (A.7).

Using

t[3] ¯[1] =
1

6
N(N2 − 1)(N + 3)

t[13] ¯[1] =
1

6
N(N2 − 1)(N − 3)

t[2,1] ¯[1] =
1

3
N2(N2 − 1)(N + 3) (A.21)

the three equations (A.20) are unified to be

1∗pR =
dR

3!tRS̄

(

1 −
1

NΩ3
Ω<i>

2 Ci1̄

)

pR (A.22)

and we reproduce the expression of projectors (5.15).

A.2 Algebra relations in BN (3, 1) and BN (2, 2)

In this section, we list some useful formulae for BN (3, 1) and BN (2, 2) which are used in

the construction of projectors in sections 5.3 and 5.4.

A.2.1 BN (3, 1)

C2 = NC + T[2,1]C − D

D2 = NC + T[2,1]C − D

CD = ND + T[3]C (A.23)

where T[2,1] = s1 + s2 + s1s2s1 and T[3] = s1s2 + s2s1 are central elements in S3.

(T[3])
2 = T[3] + 2, (T[2,1])

2 = 3(T[3] + 1), T[2,1]T[3] = 2T[2,1] (A.24)

T[2,1]D = C + T[3]C

T[3]D = T[2,1]C − D (A.25)

A.2.2 BN (2, 2)

C2 = (N + s + s̄)C + 2C(2)

CC(2) = C(2)C = C(2)(2N + s + s̄)

(C(2))
2 = C(2)N(N + s)

C(2)s = C(2)s̄ (A.26)
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A.3 Proof of Cij̄PRS̄ = 0 for composites of symmetric and antisymmetric repre-

sentations

In this section, we give a proof of Cij̄PRS̄ = 0 for R = [m] or [1m] and S = [n] or [1n].

We first consider (R,S) = ([m], [n]). We recall the expression of the projector in this

case

P[m] ¯[n] =

(

1 −
1

N + m + n − 2
C(1)

+
1

(N + m + n − 3)(N + m + n − 2)
C(2) + · · ·

)

p[m]p̄[n]

=

(

1 +

n
∑

k=1

(−1)k
k

∏

l=1

1

(N + m + n − l − 1)
C(k)

)

p[m]p̄[n] (A.27)

where

C(1) =
∑

ij

Cij̄ C(2) =
1

2

∑

i6=k

∑

j 6=l

Cik̄Cjl̄ · · ·

C(k) =
1

k!

∑

ia 6=ib

∑

ja 6=jb

Ci1 j̄1
Ci2 j̄2

· · ·Cik j̄k
(A.28)

In order to show C11̄P[m][n] = 0, we need to evaluate C11̄C(k) acting on p[m]p̄[n]. The k = 1

case is calculated as

C11̄C(1)p[m]p̄[n] =



NC11̄ + C11̄

∑

k 6=1

(1k) + C11̄

∑

l 6=1

(1̄l̄) + C11̄

∑

l 6=1,k 6=1

Ckl̄



 p[m]p̄[n]

=
(

C11̄(N + m + n − 2) + C11̄C
<1,1̄>
(1)

)

p[m]p̄[n] (A.29)

where we have defined

C<1,1̄>
(1) =

∑

k 6=1,l 6=1

Ckl̄ (A.30)

which is the sum of single contractions avoiding {1, 1̄}. To show the second line, we have

used

σp[m] = p[m] (A.31)

for any transposition σ ∈ Sm. We next define

C<1,1̄>

(k) =
1

k!

∑

ia 6=ib 6=1

∑

ja 6=jb 6=1

Ci1 j̄1
Ci2j̄2

· · ·Cik j̄k
(A.32)

for any k, which is the sum of k disjoint contractions avoiding {1, 1̄}. Then we have

C11̄C(2)p[m]p̄[n] =
(

(N + m + n − 3)C11̄C
<1,1̄>
(1) + C11̄C

<1,1̄>
(2)

)

p[m]p̄[n]

C11̄C(k)p[m]p̄[n] =
(

(N + m + n − k − 1)C11̄C
<1,1̄>
(k−1) + C11̄C

<1,1̄>
(k)

)

p[m]p̄[n]

C11̄C(n)p[m]p̄[n] = (N + m + n − n − 1)C11̄C
<1,1̄>
(n−1) p[m]p̄[n] (A.33)
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Using these equations, we can show

C11̄P[m] ¯[n] =

(

C11̄ +
n

∑

k=1

(−1)k
k

∏

l=1

C11̄C(k)

(N + m + n − l − 1)

)

p[m]p̄[n]

=

(

C11̄ +

n
∑

k=1

(−1)k
(

f (k) + f (k+1)
)

)

p[m]p̄[n]

= 0 (A.34)

where

f (k) ≡
k−1
∏

l=1

C11̄C
<1,1̄>

(k−1)

(N + m + n − l − 1)
(k = 2, · · · , n) f (1) ≡ C11̄ f (n+1) = 0 (A.35)

In the same way, we can give a proof Cij̄PRS̄ = 0 for other cases. For antisymmetric

representation, (A.31) gets replaced with

σp[1m] = −p[1m] (A.36)

for any transposition σ.

A.4 Orthogonal set of gauge theory operators for some examples

In this section, symmetric operators are listed for some examples: (m,n) =

(1, 1), (2, 1), (3, 1) and (2, 2) using projectors in section 5. As we discussed in sections 4

and 7, symmetric projectors for k 6= 0 are labelled by three indices γ, A and i. The index

i runs over the multiplicity Mγ
A. For some examples we will consider here, the multiplicity

takes 1 for any γ and A. Therefore we omit the index i in this section. In the case of

k = 0, symmetric projectors are central element of the Brauer algebra and are labelled by

an index γ. We express P (k=0,γ+=R,γ−=S) ≡ PRS̄ .

A.4.1 m = 1, n = 1

tr1,1(P[1] ¯[1]Φ) = tr(Φ)tr(Φ†) −
1

N
tr(ΦΦ†)

tr1,1(P
(k=1)

[1] ¯[1]
Φ) =

1

N
tr(ΦΦ†) (A.37)

To be precise, we should write P
(k=1,γ+=∅,γ−=∅)

[1] ¯[1]
instead of P

(k=1)

[1] ¯[1]
. But we use the latter

expression because there is only one choice for k = 1 in this case, and this does not cause

any confusion. We also use this notation for following examples.

A.4.2 m = 2, n = 1

tr2,1(P[2] ¯[1]Φ) =
1

2
(trΦ)2trΦ† +

1

2
trΦ2trΦ† − tr2,1(P

(k=1)

[2] ¯[1]
Φ)

tr2,1(P[12] ¯[1]Φ) =
1

2
(trΦ)2trΦ† −

1

2
trΦ2trΦ† − tr2,1(P

(k=1)

[12] ¯[1]
Φ)

tr2,1(P
(k=1)

[2] ¯[1]
Φ) =

1

N + 1

(

tr(Φ)tr(ΦΦ†) + tr(Φ2Φ†)
)

tr2,1(P
(k=1)

[12] ¯[1]
Φ) =

1

N − 1

(

tr(Φ)tr(ΦΦ†) − tr(Φ2Φ†)
)

(A.38)
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A.4.3 m = 3, n = 1

tr3,1(P[3] ¯[1]Φ) =
1

6
(trΦ)3trΦ†+

1

2
trΦ2trΦtrΦ†+

1

3
trΦ3trΦ†−tr3,1(P

[2][∅](k=1)

[3] ¯[1]
Φ)

tr3,1(P[13] ¯[1]Φ) =
1

6
(trΦ)3trΦ†−

1

2
trΦ2trΦtrΦ†+

1

3
trΦ3trΦ†−tr3,1(P

[12][∅](k=1)

[13] ¯[1]
Φ)

tr3,1(P[2,1] ¯[1]Φ) =
2

3
(trΦ)3trΦ†−

2

3
trΦ3trΦ†−tr3,1(P

[2][∅](k=1)

[2,1] ¯[1]
Φ)−tr3,1(P

[12][∅](k=1)

[2,1] ¯[1]
Φ)

tr3,1(P
(k=1,γ+=[2],γ−=[∅])

[3] ¯[1]
Φ) =

1

N+2

(

1

2
trΦΦ†(trΦ)2+

1

2
trΦΦ†trΦ2+trΦ2Φ†trΦ+

1

3
trΦ3Φ†

)

tr3,1(P
(k=1,γ+=[12],γ−=[∅])

[13] ¯[1]
Φ) =

1

N−2

(

1

2
trΦΦ†(trΦ)2−

1

2
trΦΦ†trΦ2−trΦ2Φ†trΦ+

1

3
trΦ3Φ†

)

tr3,1(P
(k=1,γ+=[2],γ−=[∅])

[2,1] ¯[1]
Φ) =

1

N−1

(

trΦΦ†(trΦ)2 + trΦΦ†trΦ2 − trΦ3Φ† − trΦ2Φ†trΦ
)

tr3,1(P
(k=1,γ+=[12],γ−=[∅])

[2,1] ¯[1]
Φ) =

1

N+1

(

trΦΦ†(trΦ)2 − trΦΦ†trΦ2 − trΦ3Φ† + trΦ2Φ†trΦ
)

(A.39)

A.4.4 m = 2, n = 2

tr2,2(P[2] ¯[2]Φ) =
1

4

(

(trΦ)2(trΦ†)2 + trΦ2(trΦ†)2 + (trΦ)2tr(Φ†)2 + trΦ2tr(Φ†)2
)

−tr2,2(P
(k=1)

[2] ¯[2]
Φ) − tr2,2(P

(k=2)

[2] ¯[2]
Φ)

tr2,2(P[2] ¯[12]Φ) =
1

4

(

(trΦ)2(trΦ†)2 + trΦ2(trΦ†)2 − (trΦ)2tr(Φ†)2 − trΦ2tr(Φ†)2
)

−tr2,2(P
(k=1)

[2] ¯[12]
Φ)

tr2,2(P[12] ¯[2]Φ) =
1

4

(

(trΦ)2(trΦ†)2 − trΦ2(trΦ†)2 + (trΦ)2tr(Φ†)2 − trΦ2tr(Φ†)2
)

−tr2,2(P
(k=1)

[12] ¯[2]
Φ)

tr2,2(P[12] ¯[12]Φ) =
1

4

(

(trΦ)2(trΦ†)2 − trΦ2(trΦ†)2 − (trΦ)2tr(Φ†)2 + trΦ2tr(Φ†)2
)

−tr2,2(P
(k=1)

[12] ¯[12]
Φ) − tr2,2(P

(k=2)

[12] ¯[12]
Φ)

tr2,2(P
(k=1)

[2] ¯[2]
Φ) =

1

N + 2

(

trΦΦ†trΦtrΦ† + trΦ2Φ†trΦ† + tr(Φ(Φ†)2)trΦ + trΦ2(Φ†)2
)

−
2

N(N + 2)

(

(trΦΦ†)2 + tr(ΦΦ†ΦΦ†)
)

tr2,2(P
(k=1)

[2] ¯[12]
Φ) =

1

N

(

trΦΦ†trΦtrΦ† + trΦ2Φ†trΦ† − tr(Φ(Φ†)2)trΦ − trΦ2(Φ†)2
)

tr2,2(P
(k=1)

[12] ¯[2]
Φ) =

1

N

(

trΦΦ†trΦtrΦ† − trΦ2Φ†trΦ† + tr(Φ(Φ†)2)trΦ − trΦ2(Φ†)2
)

tr2,2(P
(k=1)

[12] ¯[12]
Φ) =

1

N − 2

(

trΦΦ†trΦtrΦ† − trΦ2Φ†trΦ† − tr(Φ(Φ†)2)trΦ + trΦ2(Φ†)2
)

−
2

N(N − 2)

(

(trΦΦ†)2 − tr(ΦΦ†ΦΦ†)
)
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tr2,2(P
(k=2)

[2] ¯[2]
Φ) =

1

N(N + 1)

(

(trΦΦ†)2 + tr(ΦΦ†ΦΦ†)
)

tr2,2(P
(k=2)

[12] ¯[12]
Φ) =

1

N(N − 1)

(

(trΦΦ†)2 − tr(ΦΦ†ΦΦ†)
)

(A.40)
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